Copied to
clipboard

G = C9xC8:C22order 288 = 25·32

Direct product of C9 and C8:C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C9xC8:C22, D8:2C18, C72:7C22, C36.63D4, SD16:1C18, M4(2):1C18, C36.48C23, C8:(C2xC18), (C9xD8):6C2, C4oD4:4C18, D4:2(C2xC18), (C2xD4):5C18, Q8:3(C2xC18), (C3xD8).5C6, C4.14(D4xC9), C6.78(C6xD4), (D4xC18):14C2, C24.12(C2xC6), (C9xSD16):5C2, (C6xD4).16C6, C18.78(C2xD4), C2.15(D4xC18), C12.73(C3xD4), (C2xC18).25D4, C22.5(D4xC9), (D4xC9):11C22, (C9xM4(2)):5C2, C4.5(C22xC18), (C3xSD16).1C6, (Q8xC9):10C22, (C2xC36).67C22, C12.48(C22xC6), (C3xM4(2)).1C6, C3.(C3xC8:C22), (C9xC4oD4):7C2, (C3xC8:C22).C3, (C2xC4).4(C2xC18), (C2xC6).29(C3xD4), (C2xC12).65(C2xC6), (C3xC4oD4).14C6, (C3xD4).14(C2xC6), (C3xQ8).27(C2xC6), SmallGroup(288,186)

Series: Derived Chief Lower central Upper central

C1C4 — C9xC8:C22
C1C2C6C12C36D4xC9C9xD8 — C9xC8:C22
C1C2C4 — C9xC8:C22
C1C18C2xC36 — C9xC8:C22

Generators and relations for C9xC8:C22
 G = < a,b,c,d | a9=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Subgroups: 174 in 102 conjugacy classes, 60 normal (36 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, D4, D4, Q8, C23, C9, C12, C12, C2xC6, C2xC6, M4(2), D8, SD16, C2xD4, C4oD4, C18, C18, C24, C2xC12, C2xC12, C3xD4, C3xD4, C3xD4, C3xQ8, C22xC6, C8:C22, C36, C36, C2xC18, C2xC18, C3xM4(2), C3xD8, C3xSD16, C6xD4, C3xC4oD4, C72, C2xC36, C2xC36, D4xC9, D4xC9, D4xC9, Q8xC9, C22xC18, C3xC8:C22, C9xM4(2), C9xD8, C9xSD16, D4xC18, C9xC4oD4, C9xC8:C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C9, C2xC6, C2xD4, C18, C3xD4, C22xC6, C8:C22, C2xC18, C6xD4, D4xC9, C22xC18, C3xC8:C22, D4xC18, C9xC8:C22

Smallest permutation representation of C9xC8:C22
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 66 59 15 42 28 50 23)(2 67 60 16 43 29 51 24)(3 68 61 17 44 30 52 25)(4 69 62 18 45 31 53 26)(5 70 63 10 37 32 54 27)(6 71 55 11 38 33 46 19)(7 72 56 12 39 34 47 20)(8 64 57 13 40 35 48 21)(9 65 58 14 41 36 49 22)
(10 70)(11 71)(12 72)(13 64)(14 65)(15 66)(16 67)(17 68)(18 69)(19 33)(20 34)(21 35)(22 36)(23 28)(24 29)(25 30)(26 31)(27 32)(46 55)(47 56)(48 57)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)
(10 27)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(28 66)(29 67)(30 68)(31 69)(32 70)(33 71)(34 72)(35 64)(36 65)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,66,59,15,42,28,50,23)(2,67,60,16,43,29,51,24)(3,68,61,17,44,30,52,25)(4,69,62,18,45,31,53,26)(5,70,63,10,37,32,54,27)(6,71,55,11,38,33,46,19)(7,72,56,12,39,34,47,20)(8,64,57,13,40,35,48,21)(9,65,58,14,41,36,49,22), (10,70)(11,71)(12,72)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63), (10,27)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,64)(36,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,66,59,15,42,28,50,23)(2,67,60,16,43,29,51,24)(3,68,61,17,44,30,52,25)(4,69,62,18,45,31,53,26)(5,70,63,10,37,32,54,27)(6,71,55,11,38,33,46,19)(7,72,56,12,39,34,47,20)(8,64,57,13,40,35,48,21)(9,65,58,14,41,36,49,22), (10,70)(11,71)(12,72)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63), (10,27)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,64)(36,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,66,59,15,42,28,50,23),(2,67,60,16,43,29,51,24),(3,68,61,17,44,30,52,25),(4,69,62,18,45,31,53,26),(5,70,63,10,37,32,54,27),(6,71,55,11,38,33,46,19),(7,72,56,12,39,34,47,20),(8,64,57,13,40,35,48,21),(9,65,58,14,41,36,49,22)], [(10,70),(11,71),(12,72),(13,64),(14,65),(15,66),(16,67),(17,68),(18,69),(19,33),(20,34),(21,35),(22,36),(23,28),(24,29),(25,30),(26,31),(27,32),(46,55),(47,56),(48,57),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63)], [(10,27),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(28,66),(29,67),(30,68),(31,69),(32,70),(33,71),(34,72),(35,64),(36,65)]])

99 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C6A6B6C6D6E···6J8A8B9A···9F12A12B12C12D12E12F18A···18F18G···18L18M···18AD24A24B24C24D36A···36L36M···36R72A···72L
order1222223344466666···6889···912121212121218···1818···1818···182424242436···3636···3672···72
size1124441122411224···4441···12222441···12···24···444442···24···44···4

99 irreducible representations

dim111111111111111111222222444
type+++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6C9C18C18C18C18C18D4D4C3xD4C3xD4D4xC9D4xC9C8:C22C3xC8:C22C9xC8:C22
kernelC9xC8:C22C9xM4(2)C9xD8C9xSD16D4xC18C9xC4oD4C3xC8:C22C3xM4(2)C3xD8C3xSD16C6xD4C3xC4oD4C8:C22M4(2)D8SD16C2xD4C4oD4C36C2xC18C12C2xC6C4C22C9C3C1
# reps11221122442266121266112266126

Matrix representation of C9xC8:C22 in GL6(F73)

400000
040000
008000
000800
000080
000008
,
0720000
100000
00170710
001707272
00711560
00710560
,
7200000
010000
001000
0017200
00170072
00170720
,
7200000
0720000
001000
000100
00170720
00170072

G:=sub<GL(6,GF(73))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[0,1,0,0,0,0,72,0,0,0,0,0,0,0,17,17,71,71,0,0,0,0,1,0,0,0,71,72,56,56,0,0,0,72,0,0],[72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,17,17,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,17,17,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72] >;

C9xC8:C22 in GAP, Magma, Sage, TeX

C_9\times C_8\rtimes C_2^2
% in TeX

G:=Group("C9xC8:C2^2");
// GroupNames label

G:=SmallGroup(288,186);
// by ID

G=gap.SmallGroup(288,186);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-2,365,3110,192,5884,2951,242]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<