direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C9×C8⋊C22, D8⋊2C18, C72⋊7C22, C36.63D4, SD16⋊1C18, M4(2)⋊1C18, C36.48C23, C8⋊(C2×C18), (C9×D8)⋊6C2, C4○D4⋊4C18, D4⋊2(C2×C18), (C2×D4)⋊5C18, Q8⋊3(C2×C18), (C3×D8).5C6, C4.14(D4×C9), C6.78(C6×D4), (D4×C18)⋊14C2, C24.12(C2×C6), (C9×SD16)⋊5C2, (C6×D4).16C6, C18.78(C2×D4), C2.15(D4×C18), C12.73(C3×D4), (C2×C18).25D4, C22.5(D4×C9), (D4×C9)⋊11C22, (C9×M4(2))⋊5C2, C4.5(C22×C18), (C3×SD16).1C6, (Q8×C9)⋊10C22, (C2×C36).67C22, C12.48(C22×C6), (C3×M4(2)).1C6, C3.(C3×C8⋊C22), (C9×C4○D4)⋊7C2, (C3×C8⋊C22).C3, (C2×C4).4(C2×C18), (C2×C6).29(C3×D4), (C2×C12).65(C2×C6), (C3×C4○D4).14C6, (C3×D4).14(C2×C6), (C3×Q8).27(C2×C6), SmallGroup(288,186)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C9×C8⋊C22
G = < a,b,c,d | a9=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >
Subgroups: 174 in 102 conjugacy classes, 60 normal (36 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, D4, Q8, C23, C9, C12, C12, C2×C6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C18, C18, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×D4, C3×Q8, C22×C6, C8⋊C22, C36, C36, C2×C18, C2×C18, C3×M4(2), C3×D8, C3×SD16, C6×D4, C3×C4○D4, C72, C2×C36, C2×C36, D4×C9, D4×C9, D4×C9, Q8×C9, C22×C18, C3×C8⋊C22, C9×M4(2), C9×D8, C9×SD16, D4×C18, C9×C4○D4, C9×C8⋊C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C9, C2×C6, C2×D4, C18, C3×D4, C22×C6, C8⋊C22, C2×C18, C6×D4, D4×C9, C22×C18, C3×C8⋊C22, D4×C18, C9×C8⋊C22
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 66 59 15 42 28 50 23)(2 67 60 16 43 29 51 24)(3 68 61 17 44 30 52 25)(4 69 62 18 45 31 53 26)(5 70 63 10 37 32 54 27)(6 71 55 11 38 33 46 19)(7 72 56 12 39 34 47 20)(8 64 57 13 40 35 48 21)(9 65 58 14 41 36 49 22)
(10 70)(11 71)(12 72)(13 64)(14 65)(15 66)(16 67)(17 68)(18 69)(19 33)(20 34)(21 35)(22 36)(23 28)(24 29)(25 30)(26 31)(27 32)(46 55)(47 56)(48 57)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)
(10 27)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(28 66)(29 67)(30 68)(31 69)(32 70)(33 71)(34 72)(35 64)(36 65)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,66,59,15,42,28,50,23)(2,67,60,16,43,29,51,24)(3,68,61,17,44,30,52,25)(4,69,62,18,45,31,53,26)(5,70,63,10,37,32,54,27)(6,71,55,11,38,33,46,19)(7,72,56,12,39,34,47,20)(8,64,57,13,40,35,48,21)(9,65,58,14,41,36,49,22), (10,70)(11,71)(12,72)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63), (10,27)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,64)(36,65)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,66,59,15,42,28,50,23)(2,67,60,16,43,29,51,24)(3,68,61,17,44,30,52,25)(4,69,62,18,45,31,53,26)(5,70,63,10,37,32,54,27)(6,71,55,11,38,33,46,19)(7,72,56,12,39,34,47,20)(8,64,57,13,40,35,48,21)(9,65,58,14,41,36,49,22), (10,70)(11,71)(12,72)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,33)(20,34)(21,35)(22,36)(23,28)(24,29)(25,30)(26,31)(27,32)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63), (10,27)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,64)(36,65) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,66,59,15,42,28,50,23),(2,67,60,16,43,29,51,24),(3,68,61,17,44,30,52,25),(4,69,62,18,45,31,53,26),(5,70,63,10,37,32,54,27),(6,71,55,11,38,33,46,19),(7,72,56,12,39,34,47,20),(8,64,57,13,40,35,48,21),(9,65,58,14,41,36,49,22)], [(10,70),(11,71),(12,72),(13,64),(14,65),(15,66),(16,67),(17,68),(18,69),(19,33),(20,34),(21,35),(22,36),(23,28),(24,29),(25,30),(26,31),(27,32),(46,55),(47,56),(48,57),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63)], [(10,27),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(28,66),(29,67),(30,68),(31,69),(32,70),(33,71),(34,72),(35,64),(36,65)]])
99 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | ··· | 6J | 8A | 8B | 9A | ··· | 9F | 12A | 12B | 12C | 12D | 12E | 12F | 18A | ··· | 18F | 18G | ··· | 18L | 18M | ··· | 18AD | 24A | 24B | 24C | 24D | 36A | ··· | 36L | 36M | ··· | 36R | 72A | ··· | 72L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 18 | ··· | 18 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 2 | 4 | 4 | 4 | 1 | 1 | 2 | 2 | 4 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
99 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | ||||||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | C9 | C18 | C18 | C18 | C18 | C18 | D4 | D4 | C3×D4 | C3×D4 | D4×C9 | D4×C9 | C8⋊C22 | C3×C8⋊C22 | C9×C8⋊C22 |
kernel | C9×C8⋊C22 | C9×M4(2) | C9×D8 | C9×SD16 | D4×C18 | C9×C4○D4 | C3×C8⋊C22 | C3×M4(2) | C3×D8 | C3×SD16 | C6×D4 | C3×C4○D4 | C8⋊C22 | M4(2) | D8 | SD16 | C2×D4 | C4○D4 | C36 | C2×C18 | C12 | C2×C6 | C4 | C22 | C9 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 6 | 6 | 12 | 12 | 6 | 6 | 1 | 1 | 2 | 2 | 6 | 6 | 1 | 2 | 6 |
Matrix representation of C9×C8⋊C22 ►in GL6(𝔽73)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
0 | 72 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 0 | 71 | 0 |
0 | 0 | 17 | 0 | 72 | 72 |
0 | 0 | 71 | 1 | 56 | 0 |
0 | 0 | 71 | 0 | 56 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 17 | 0 | 0 | 72 |
0 | 0 | 17 | 0 | 72 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 17 | 0 | 72 | 0 |
0 | 0 | 17 | 0 | 0 | 72 |
G:=sub<GL(6,GF(73))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[0,1,0,0,0,0,72,0,0,0,0,0,0,0,17,17,71,71,0,0,0,0,1,0,0,0,71,72,56,56,0,0,0,72,0,0],[72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,17,17,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,17,17,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72] >;
C9×C8⋊C22 in GAP, Magma, Sage, TeX
C_9\times C_8\rtimes C_2^2
% in TeX
G:=Group("C9xC8:C2^2");
// GroupNames label
G:=SmallGroup(288,186);
// by ID
G=gap.SmallGroup(288,186);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-2,365,3110,192,5884,2951,242]);
// Polycyclic
G:=Group<a,b,c,d|a^9=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations